Complexity of Finding Nearest Colorful Polytopes
نویسندگان
چکیده
Let P1, . . . , Pd+1 ⊂ R be point sets whose convex hulls each contain the origin. Each set represents a color class. The Colorful Carathéodory theorem guarantees the existence of a colorful choice, i.e., a set that contains exactly one point from each color class, whose convex hull also contains the origin. The computational complexity of finding such a colorful choice is still unknown. We study a natural generalization of the problem: in the Nearest Colorful Polytope problem (NCP), we are given sets P1, . . . , Pn ⊂ R, and we would like to find a colorful choice whose convex hull minimizes the distance to the origin. We show that computing local optima of the NCP problem is PLS-complete, while computing a global optimum is NP-hard.
منابع مشابه
Computational Aspects of the Colorful Carathéodory Theorem
Let P1, . . . , Pd+1 ⊂ R be d-dimensional point sets such that the convex hull of each Pi contains the origin. We call the sets Pi color classes, and we think of the points in Pi as having color i. A colorful choice is a set with at most one point of each color. The colorful Carathéodory theorem guarantees the existence of a colorful choice whose convex hull contains the origin. So far, the com...
متن کاملLinear Programming, the Simplex Algorithm and Simple Polytopes
In the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concurring the simplex algorithm. We describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes.
متن کاملPoints in Two Polytopes
We propose a separating-hyperplane algorithm for finding a nearest pair of points in two polytopes, where each polytope is expressed as the convex hull of given points in a Euclidian space. The proposed algorithm is an extension of the authors dual algorithm for finding t.he minimum-norm point in a polytope.
متن کاملApproximating the Colorful Carathéodory Theorem
Let P1, . . . , Pd+1 ⊂ R be d-dimensional point sets such that the convex hull of each Pi contains the origin. We call the sets Pi color classes, and we think of the points in Pi as having color i. A colorful choice is a set with at most one point from each color class. The colorful Carathéodory theorem guarantees the existence of a colorful choice whose convex hull contains the origin. So far,...
متن کاملComputation of certain measures of proximity between convex polytopes: a complexity viewpoint
Four problems of proximity between two convex polytopes in R' are considered. The convex polytopes are represented as convex hulls of finite sets of points. Let the total number of points in the two finite sets be n. W e show that three of the proximity problems, viz., checking intersection, checking whether the polytopes are just touching and finding the distance between them, can be solved in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014